作者 史鹏宙 CSIG云与智慧产业事业群研发工程师
ClickHouse作为OLAP分析引擎已经被广泛使用,数据的导入导出是用户面临的第一个问题。由于ClickHouse本身无法很好地支持单条大批量的写入,因此在实时同步数据方面需要借助其他服务协助。本文给出一种结合Canal+Kafka的方案,并且给出在多个MySQL实例分库分表的场景下,如何将多张MySQL数据表写入同一张ClickHouse表的方法,欢迎大家批评指正。
首先来看看我们的需求背景:
实时同步多个MySQL实例数据到ClickHouse,每天规模500G,记录数目亿级别,可以接受分钟级别的同步延迟;
某些数据库表存在分库分表的操作,用户需要跨MySQL实例跨数据库的表同步到ClickHouse的一张表中;
现有的MySQL binlog开源组件(Canal),无法做到多张源数据表到一张目的表的映射关系。
基本原理
一、使用JDBC方式同步
使用Canal组件完成binlog的解析和数据同步;
Canal-Server进程会伪装成MySQL的slave,使用MySQL的binlog同步协议完成数据同步;
Canal-Adapter进程负责从canal-server获取解析后的binlog,并且通过jdbc接口写入到ClickHouse;
优点:
- Canal组件原生支持;
缺点:
Canal-Adpater写入时源表和目的表一一对应,灵活性不足;
需要维护两个Canal组件进程;
二、Kafka+ClickHouse物化视图方式同步
Canal-Server完成binlog的解析,并且将解析后的json写入Kafka;
Canal-Server可以根据正则表达式过滤数据库和表名,并且根据规则写入Kafka的topic;
ClickHouse使用KafkaEngine和Materialized View完成消息消费,并写入本地表;
优点:
Kafka支持水平扩展,可以根据数据规模调整partition数目;
Kafka引入后将写入请求合并,防止ClickHouse生成大量的小文件,从而影响查询性能;
Canal-Server支持规则过滤,可以灵活配置上游的MySQL实例的数据库名和表名,并且指明写入的Kafka topic名称;
缺点:
需要维护Kafka和配置规则;
ClickHouse需要新建相关的视图、Kafka Engine的外表等;
具体步骤
一、准备工作
- 如果使用TencentDB,则在控制台确认binlog_format为ROW,无需多余操作。
如果是自建MySQL,则在客户端中查询变量:
> show variables like '%binlog%';+-----------------------------------------+----------------------+| Variable_name | Value |+-----------------------------------------+----------------------+| binlog_format | ROW |+-----------------------------------------+----------------------+ > show variables like '%log_bin%';+---------------------------------+--------------------------------------------+| Variable_name | Value |+---------------------------------+--------------------------------------------+| log_bin | ON || log_bin_basename | /data/mysql_root/log/20146/mysql-bin || log_bin_index | /data/mysql_root/log/20146/mysql-bin.index |+---------------------------------+--------------------------------------------+
- 创建账号canal,用于同步binlog
CREATE USER canal IDENTIFIED BY 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON . TO 'canal'@'%';
FLUSH PRIVILEGES;
二、Canal组件部署
前置条件:
Canal组件部署的机器需要跟ClickHouse服务和MySQL网络互通;
需要在机器上部署java8,配置JAVA_HOME、PATH等环境变量;
基本概念:
1. Canal-Server组件部署
Canal-Server的主要作用是订阅binlog信息并解析和定义instance相关信息,建议每个Canal-Server进程对应一个MySQL实例;
1)下载canal.deployer-1.1.4.tar.gz,解压
2)修改配置文件conf/canal.properties,需要关注的配置如下:
...# 端口相关信息,如果同一台机器部署多个进程需要修改canal.port = 11111canal.metrics.pull.port = 11112canal.admin.port = 11110...# 服务模式canal.serverMode = tcp...# Kafka地址canal.mq.servers = 172.21.48.11:9092# 使用消息队列时 这两个值必须为truecanal.mq.flatMessage = truecanal.mq.flatMessage.onlyData = true...# instance列表,conf目录下必须有同名的目录canal.destinations = example,example2
3)配置instance
可以参照example新增新的instance,主要修改配置文件conf/${instance_name}/instance.properties文件。
样例1: 同步某个数据库的以XX前缀开头的表
订阅 172.21.48.35的MySQL的testdb数据库中的以tb_开头的表的数据变更(例如tb_20200801 、 tb_20200802等),主要的步骤如下:
步骤1:创建example2实例:cddeployer/conf && cp -r example example2
步骤2:修改deployer/conf/example2/instance.properties文件
...# 上游MySQL实例地址canal.instance.master.address=172.21.48.35:3306...# 同步账户信息canal.instance.dbUsername=canalcanal.instance.dbPassword=canal...# 过滤数据库名称和表名canal.instance.filter.regex=testdb\\.tb_.*,
步骤3:在conf/canal.properties中修改 canal.destinations ,新增example2
样例2: 同步多个数据库的以XX前缀开头的表,且输出到Kafka
订阅 172.21.48.35的MySQL的empdb_0数据库的employees_20200801表,empdb_1数据库的employees_20200802表,并且数据写入Kafka;
步骤1:创建example2实例:cddeployer/conf && cp -r example example3
步骤2:修改deployer/conf/example3/instance.properties文件
...# 上游MySQL实例地址canal.instance.master.address=172.21.48.35:3306...# 同步账户信息canal.instance.dbUsername=canalcanal.instance.dbPassword=canal...# 过滤数据库名称和表名canal.instance.filter.regex=empdb_.*\\.employees_.*...# Kafka的topic名称和匹配的规则canal.mq.dynamicTopic=employees_topic:empdb_.*\\.employees_.*canal.mq.partition=0 # Kafka topic的分区数目(即partition数目)canal.mq.partitionsNum=3 # 根据employees_开头的表中的 emp_no字段来进行数据hash,分布到不同的partitioncanal.mq.partitionHash=empdb_.*\\.employees_.*:emp_no
步骤3:在Kafka中新建topic employees_topic,指定分区数目为3
步骤4:在conf/canal.properties中修改 canal.destinations ,新增example3;修改服务模式为kafka,配置kafka相关信息;
# 服务模式canal.serverMode = kafka...# Kafka地址canal.mq.servers = 172.21.48.11:9092# 使用消息队列时 这两个值必须为truecanal.mq.flatMessage = truecanal.mq.flatMessage.onlyData = true...# instance列表,conf目录下必须有同名的目录canal.destinations = example,example2,example3
2. Canal-Adapter组件部署(只针对方案一)
Canal-Adapter的主要作用是通过JDBC接口写入ClickHouse数据,可以配置多个表的写入;
1)下载canal.adapter-1.1.4.tar.gz,解压;
2)在lib目录下新增clickhouse驱动jar包及httpclient的jar包 httpcore-4.4.13.jar、httpclient-4.3.3.jar、clickhouse-jdbc-0.2.4.jar;
3)修改配置文件conf/application.yml文件,修改canalServerHost、srcDataSources、canalAdapters的配置;
server: port: 8081spring: jackson: date-format: yyyy-MM-dd HH🇲🇲ss time-zone: GMT+8 default-property-inclusion: non_null canal.conf: mode: tcp canalServerHost: 127.0.0.1:11111 # canal-server的服务地址 batchSize: 500 syncBatchSize: 1000 retries: 0 timeout: accessKey: secretKey: # MySQL的配置,修改用户名密码及制定数据库 srcDataSources: defaultDS: url: jdbc:mysql://172.21.48.35:3306 username: root password: yourpasswordhere canalAdapters: - instance: example groups: - groupId: g1 outerAdapters: - name: logger - name: rdb key: mysql1 # clickhouse的配置,修改用户名密码数据库 properties: jdbc.driverClassName: ru.yandex.clickhouse.ClickHouseDriver jdbc.url: jdbc:clickhouse://172.21.48.18:8123 jdbc.username: default jdbc.password:
4)修改配置文件conf/rdb/mytest_user.yml文件
dataSourceKey: defaultDSdestination: examplegroupId: g1outerAdapterKey: mysql1concurrent: truedbMapping: database: testdb mirrorDb: true
上述的配置文件中,由于开启了mirrorDb: true,目的端的ClickHouse必须有相同的数据库名和表名。
样例1:源数据库与目标数据库名字不同,源表名与目标表名不同
修改adapter的conf/rdb/mytest_user.yml配置文件,指定源数据库和目标数据库
dataSourceKey: defaultDSdestination: examplegroupId: g1outerAdapterKey: mysql1concurrent: truedbMapping: database: source_database_name table: source_table targetTable: destination_database_name.destination_table targetColumns: id: name: commitBatch: 3000 # 批量提交的大小
样例2:多个源数据库表写入目的端的同一张表
在conf/rdb 目录配置多个yml文件,分别指明不同的table名称。
Kafka 服务配置
一、调整合理的producer参数
确认Canal-Server里的canal.properties文件,重要参数见下表;
二、新建相关的topic名称
根据Canal-Server里instance里配置文件instance.properties,注意分区数目与canal.mq.partitionsNum 保持一致;
partition数目需要考虑以下因素:
上游的MySQL的数据量。原则上数据写入量越大,应该分配更多的partition数目;
考虑下游ClickHouse的实例数目。topic的partition分区总数 最好 不大于 下游ClickHouse的总实例数目,保证每个ClickHouse实例都能至少分配到一个partition;
ClickHouse服务配置
根据上游MySQL实例的表的schema新建数据表;
引入Kafka时需要额外新建Engine=Kafka的外表以及相关的物化视图表;
建议:
为每个外表新增不同的 kafka_group_name,防止相互影响;
设置kafka_skip_broken_messages 参数为合理值,遇到无法解析数据会跳过;
设置合理的kafka_num_consumers值,最好保证所有ClickHouse实例该值的总和大于 topic的partition数目;
新建相关的分布式查询表;
服务启动
启动相关的Canal组件进程;
canal-server: sh bin/startup.sh
canal-adapter: sh bin/startup.sh
在MySQL中插入数据,观察日志是否可以正常运行;
如果使用Kafka,可以通过kafka-console-consumer.sh脚本观察binlog数据解析;
观察ClickHouse数据表中是否正常写入数据;
实际案例
需求:实时同步MySQL实例的empdb_0.employees_20200801表和empdb_1.employees_20200802数据表
方案:使用方案二
环境及参数:
MySQL地址 | 172.21.48.35:3306 |
---|---|
CKafka地址 | 172.21.48.11:9092 |
Canal instance名称 | employees |
Kafka目的topic | employees_topic |
1.在MySQL新建相关表
# MySQL表的建表语句CREATE DATABASE `empdb_0`;CREATE DATABASE `empdb_1`; CREATE TABLE `empdb_0`.`employees_20200801` ( `emp_no` int(11) NOT NULL, `birth_date` date NOT NULL, `first_name` varchar(14) NOT NULL, `last_name` varchar(16) NOT NULL, `gender` enum('M','F') NOT NULL, `hire_date` date NOT NULL, PRIMARY KEY (`emp_no`)); CREATE TABLE `empdb_1`.`employees_20200802` ( `emp_no` int(11) NOT NULL, `birth_date` date NOT NULL, `first_name` varchar(14) NOT NULL, `last_name` varchar(16) NOT NULL, `gender` enum('M','F') NOT NULL, `hire_date` date NOT NULL, PRIMARY KEY (`emp_no`));
2. Canal-Server配置
步骤1. 修改conf/canal.properties文件
canal.serverMode = kafka...canal.destinations = example,employees...canal.mq.servers = 172.21.48.11:9092canal.mq.retries = 0canal.mq.batchSize = 16384canal.mq.maxRequestSize = 1048576canal.mq.lingerMs = 100canal.mq.bufferMemory = 33554432canal.mq.canalBatchSize = 50canal.mq.canalGetTimeout = 100canal.mq.flatMessage = truecanal.mq.flatMessage.onlyData = truecanal.mq.compressionType = nonecanal.mq.acks = allcanal.mq.producerGroup = cdbproducercanal.mq.accessChannel = local...
步骤2. 新增employees实例,修改employees/instances.properties配置
...canal.instance.master.address=172.21.48.35:3306...canal.instance.dbUsername=canalcanal.instance.dbPassword=canal...canal.instance.filter.regex=empdb_.*\\.employees_.*...canal.mq.dynamicTopic=employees_topic:empdb_.*\\.employees_.*canal.mq.partition=0canal.mq.partitionsNum=3canal.mq.partitionHash=empdb_.*\\.employees_.*:emp_no
3. Kafka配置
4. 新增topic employees_topic,分区数为3
5. ClickHouse建表
CREATE DATABASE testckdb ON CLUSTER default_cluster; CREATE TABLE IF NOT EXISTS testckdb.ck_employees ON CLUSTER default_cluster ( `emp_no` Int32, `birth_date` String, `first_name` String, `last_name` String, `gender` String, `hire_date` String) ENGINE=MergeTree() ORDER BY (emp_no)SETTINGS index_granularity = 8192; CREATE TABLE IF NOT EXISTS testckdb.ck_employees_stream ON CLUSTER default_cluster ( `emp_no` Int32, `birth_date` String, `first_name` String, `last_name` String, `gender` String, `hire_date` String) ENGINE = Kafka()SETTINGS kafka_broker_list = '172.21.48.11:9092', kafka_topic_list = 'employees_topic', kafka_group_name = 'employees_group', kafka_format = 'JSONEachRow', kafka_skip_broken_messages = 1024, kafka_num_consumers = 1; CREATE MATERIALIZED VIEW IF NOT EXISTS testckdb.ck_employees_mv ON CLUSTER default_cluster TO testckdb.ck_employees( `emp_no` Int32, `birth_date` String, `first_name` String, `last_name` String, `gender` String, `hire_date` String) AS SELECT `emp_no`, `birth_date`, `first_name`, `last_name`, `gender`, `hire_date`FROM testckdb.ck_employees_stream; CREATE TABLE IF NOT EXISTS testckdb.ck_employees_dis ON CLUSTER default_cluster AS testckdb.ck_employees ENGINE=Distributed(default_cluster, testckdb, ck_employees);
6. 启动Canal-Server服务
MySQL实例上游插入数据,观察数据是否在Canal-Server解析正常,是否在ClickHouse中完成同步。
本文由博客一文多发平台 OpenWrite 发布!
原文转载:http://www.shaoqun.com/a/485965.html
prime day:https://www.ikjzd.com/w/131
naver:https://www.ikjzd.com/w/1727
文化衫事件:https://www.ikjzd.com/w/1932
作者史鹏宙CSIG云与智慧产业事业群研发工程师ClickHouse作为OLAP分析引擎已经被广泛使用,数据的导入导出是用户面临的第一个问题。由于ClickHouse本身无法很好地支持单条大批量的写入,因此在实时同步数据方面需要借助其他服务协助。本文给出一种结合Canal+Kafka的方案,并且给出在多个MySQL实例分库分表的场景下,如何将多张MySQL数据表写入同一张ClickHouse表的方法
杨颜:https://www.ikjzd.com/w/1820
askme:https://www.ikjzd.com/w/2459
白水寨紫荆花开了吗?增城白水寨景区紫荆花开花时间?:http://tour.shaoqun.com/a/22337.html
2020三八节深圳去哪里玩免费?深圳三八节对女士免费的地方:http://tour.shaoqun.com/a/31200.html
珠海石景山公园票价?石景山公园优惠价?:http://tour.shaoqun.com/a/20290.html
没有评论:
发表评论